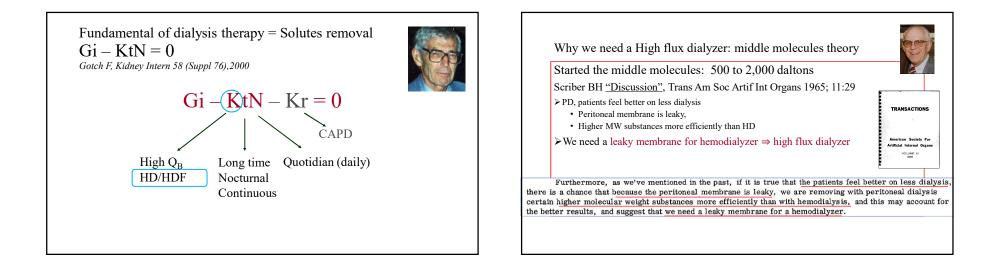

Hideki Kawanishi Tsuchiya General Hospital , Hiroshima, JAPAN


Disclosure of Financial Relationships

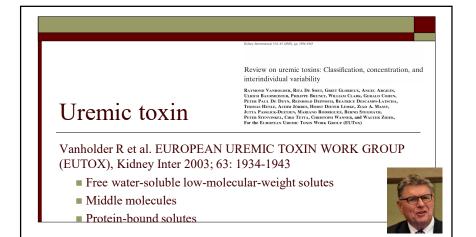
The author declares no conflicting interest

Hideki Kawanishi

Middle molecules theory by Babb

500 to 2000 daltons

• American Society for Artificial Internal Organs: April 1971 - Volume 17 - Issue 1 - p 81-91


THE GENESIS OF THE SQUARE METER-HOUR HYPOTHESIS

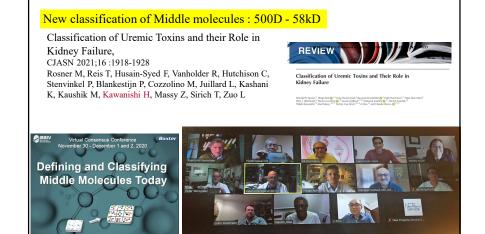
Albert L. Babb, Robert P. Popovich, T. Graham Christopher, and Belding H. Scribner

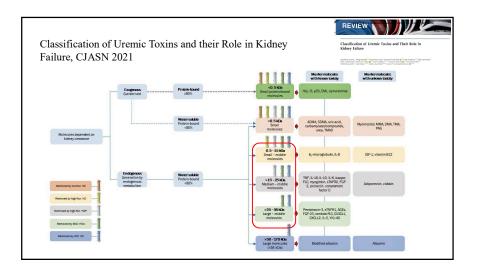
• American Journal of Kidney Diseases, Vol. I, No.1 (July), 1981

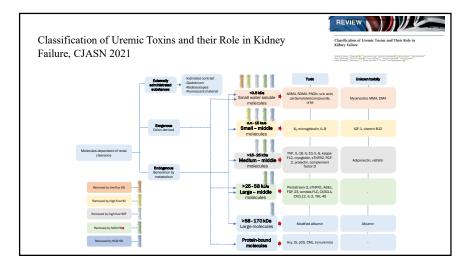
The Middle Molecule Hypothesis in Perspective

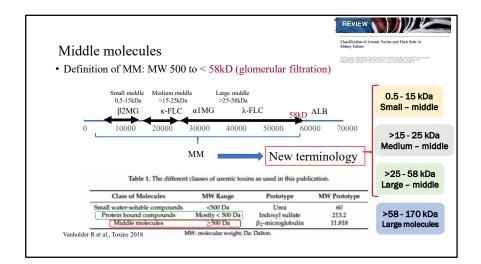
Albert L. Babb, Ph.D., Suhail Ahmad, M.D., Jonas Bergström, M.D., and Belding H. Scribner, M.D.

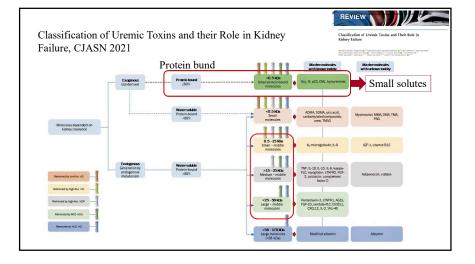
Free water-soluble low-molecular-weight solutes (N = 45) *Vanholder R et al., KI 2003; 63: 1934*

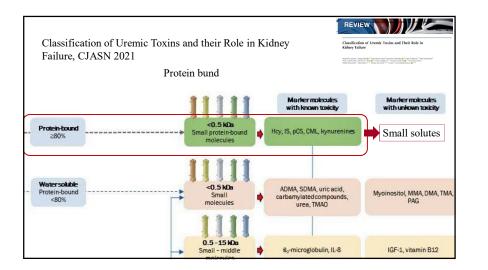

1-methyladenosine	Erythritol	Orotidine
1-methylguanosine	γ-guanidinobutyric acid	Oxalate
1-methylinosine	Guanidine	Phenylacetylglutamine
ADMA	Guanidinoacetic acid	Pseudouridine
αketoguanidinovaleric acid	Guanidonosuccinic acid	SDMA
α-N-acetylarginine	Hypoxanthine	Taurocyamine
Arab(in)itol	Malondialdehyde	Threitol
Argininic acid	Mannitol	Thymine
Benzylalcohol	Methylguanidine	Uracil
β-guanidinopropionic acid	Myoinositol	Urea
β-lipotropin	N2,N2-dimethylguanosine	Uric acid
Creatinine	N4-acetylcytidine	Uridine
Creatine Guanidines	N6-methyladenosine	Xanthine
Cytidine	N6-threonylcarbamoyladenosine	Xanthosine
Dimethylglycine	Orotic acid	

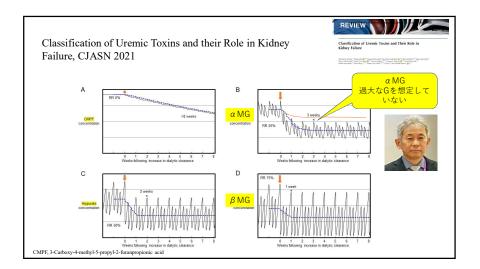

Middle molecules (N = 21) Vanholder R et al., KI 2003; 63: 1934 Adrenomedullin k-Ig Atrial natriuretic peptide λ -Ig

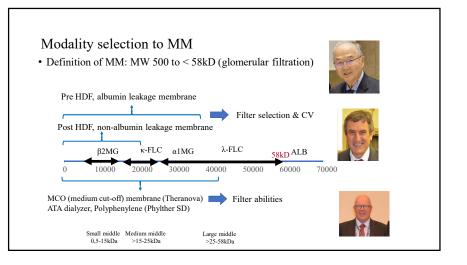

β2-microglobulin Cholecystokinin Clara cell protein (CC16) Complement factor D Cystatin C Degranulation inhibiting protein Ic Delta-sleep inducing peptide Endothelin Hyaluronic Interleukin-1 Interleukin-6 k-Ig light chain λ-Ig light chain Leptin Methionine-enkephalin Neuropeptide Y Parathyroid hormone Retinol-binding protein Tumor necrosis factor-a

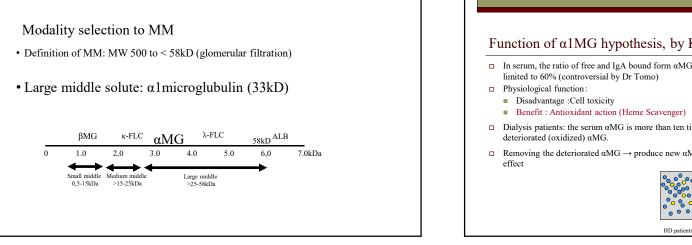

Protein-bound solutes (N = 26) Vanholder R et al., KI 2003; 63: 1934

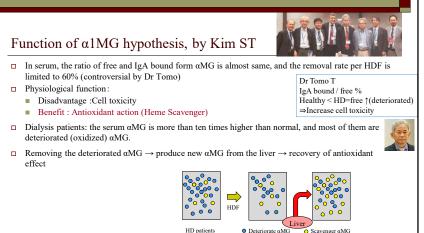

2-methoxyresorcinol	Phenols	Methylglyoxal	AGE
3-deoxyglucosone	AGE	N-(carboxymethyl)lysine	AGE
CMPF		p-cresol	Phenols
Fructoselysine	AGE	Pentosidine	AGE
Glyoxal	AGE	Phenol Phenols	
Hippuric	Hippurates	P-OHhippuric axid	Hippurates
Homocysteine		Putrescine	Polyamines
Hydroquinone	Phenols	Quinolinic acid	Indoles
Indole-3-acetic	Indoles	Retinol-binding protein	Peptides
Indoxyl sulfate	Indoles	Spermidine	Polyamines
Kinurenine	Indoles	Spermine	Polyamines
Kynurenic	Indoles	Orotic acid	
Leptin	Peptides		
Melatonin	Indoles		

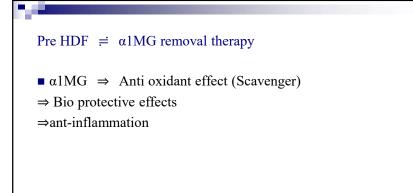


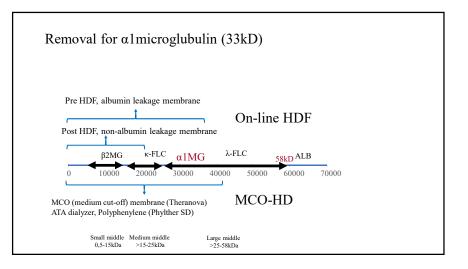


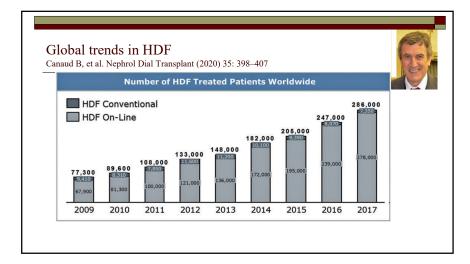


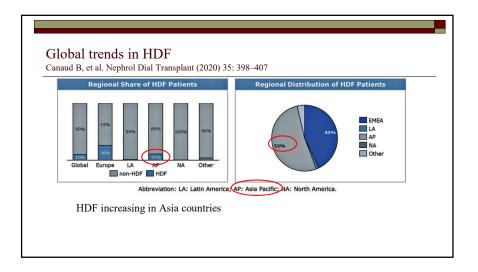

Influenced by C	Jremic Toxins Relate to Re onvective Transport, and D I., Toxins 2020, 12, 234	sidual Kidney Function, Ar to Not Relate to Outcome	e Not
CONTRAST: noval rate	low-flux HD vs online	HDF	
Protein-bound toxin	HD (redaction % /6M) N 38	HDF(redaction % /6M) N35	HD vs HDF, p
Kynurenine	-7.7 (-22.6 to 14.5) p<0.269	-5.9 (-20.9 to 29.3) p < 0.694	0.453
Kynurenic acid	5.6 (8.6 to 69.1) p<0.111	3.2 (22.1 to 39.5) p<0.537	0.430
Indoxyl sulfate	11.9 (15.4 to 31.9) p<0.133	-8.0 (-34.6 to 15.3) p<0.092	0.045
Indole-3-acetic acid	9.2 (19.6 to 34.9) p<0.876	-10.8 (-26.0 to 14.0) p<0.615	0.356
p-Cresyl sulfate	-8.8 (-28.9 to 29.5) p<0.510	-2.7 (-27.4 to 10.2) p<0.199	0.854
p-Cresyl glucuronide	-7.0 (-38.1 to 69.8) p<0.421	7.4 (37.3 to 65.3) p<0.765	0.681
Hippuric acid	5.7 (44.6 to 54.5) p<0.531	-21.9 (-47.6 to 42.4) p<0.187	0.566

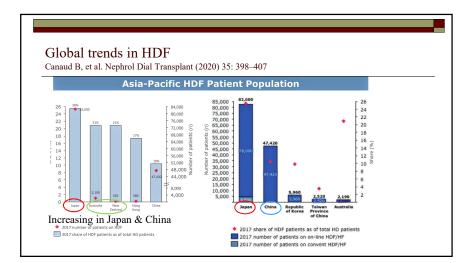

CONTR	A ST. Lor	., fl		12, 234 D va	online HD	Б			
CONTR	AS1. 10	w-mux	. 11	DVS	onnie mD	L.			
Hazard rat	tios for all	-cause	mo	rtality a	nd new CVI) eve	nts for plasm	na conc	. at basel
	10				1	Jazard Ra	tio (95% CI)		
Mortality rate	PBUT	Outcome	N	# Events	Model I	Р	Model II	Р	
intortanty rate	Kynurenine (umol/L)	All-cause mortality	79	34	1.020 (0.802 to 1.298)	0.872	0.943 (0.707 to 1.256)	0.687	
	(funicity)	CV events	78	29	1.054 (0.807 to 1.376)	0.701	0.982 (0.717 to 1.346)	0.911	
	Kynurenic acid (umol/L)	All-cause mortality	80	35	0.879 (0.638 to 1.210)	0.429	1.104 (0.666 to 1.829)	0.702	
	(punov L)	CV events	79	29	0.876 (0.622 to 1.235)	0.876	1.333 (0.798 to 2.226)	0.272	
	Indoxyl sulfate (umol/L)	All-cause mortality	80	35	1.001 (0.995 to 1.006)	0.837	1.002 (0.995 to 1.009)	0.617	
		CV events	79	29	1.003 (0.998 to 1.008)	0.290	1.007 (1.000 to 1.015)	0.056	
	Indole-3-acetic acid (umol/L)	All-cause mortality	60	24	1.190 (0.609 to 2.323)	0.610	1.346 (0.568 to 3.192)	0.500	
	add (µnoyt.)	CV events	59	20	1.002 (0.493 to 2.039)	0.995	1.434 (0.535 to 3.847)	0.474	-NS
	p-Cresyl sulfate (umol/L)	All-cause mortality	80	35	0.955 (0.670 to 1.362)	0.801	0.897 (0.614 to 1.310)	0.574	1.00
	(muotr)	CV events	79	29	0.960 (0.664 to 1.389)	0.829	1.036 (0.667 to 1.611)	0.874	
	p-Cresyl glucuronide	All-cause	80	35	0.992 (0.767 to 1.283)	0.952	1.024 (0.782 to 1.340)	0.864	

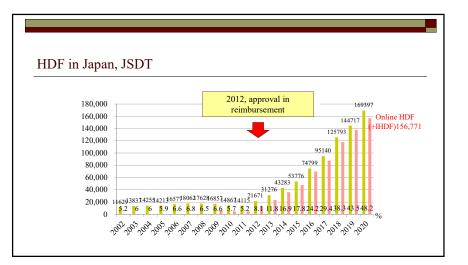

older R et al., Toxins 2018, 10, 33;	doi:10.3390/to	oxins10010033		
Table 8. Ure	mic toxins with th	ne highest toxicity score.		
Evidence Score: 4	Exp. Score	Evidence Score: 3	Exp. Score	
p-Cresyl sulfate	7	AGEs	7	
β ₂ -Microglobulin	6	Indoxyl sulfate	6	
ADMA	5	Uric acid	6	
Kynurenines	5	Ghrelin	5	Not ye
Carbamylated compounds	3	Indole acetic acid	5	Evidence
FGF-23	3	Parathyroid hormone	5	
Interleukin-6	3	Phenyl acetic acid	5	
TNF-α	3	TMAO	5	
SDMA	2	Retinol binding protein	4	
		Endothelin	3	
		IgLC	3	
		Interleukin-1β	3	
		Interleukin-8	3	
		Neuropeptide Y	3	
		Lipids & lipoproteins	2	

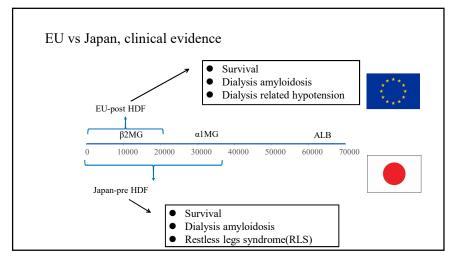


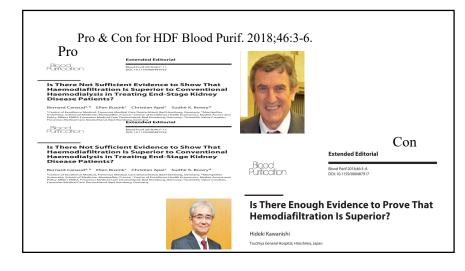


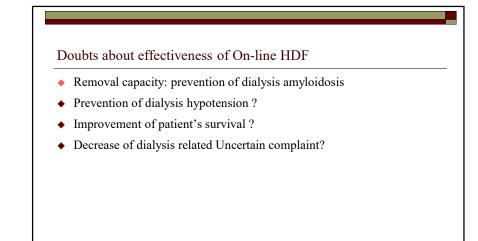


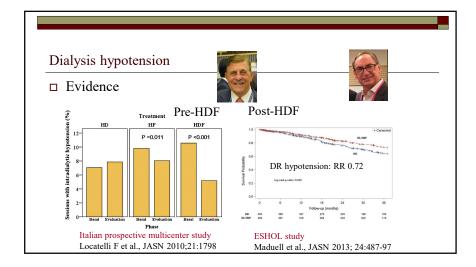


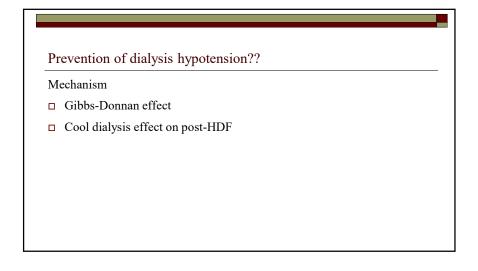


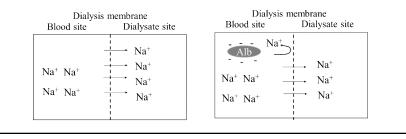


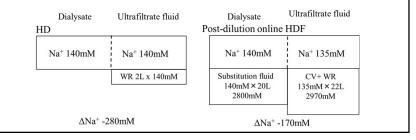


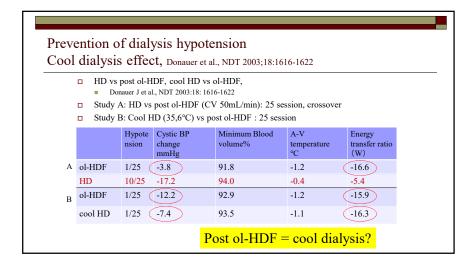


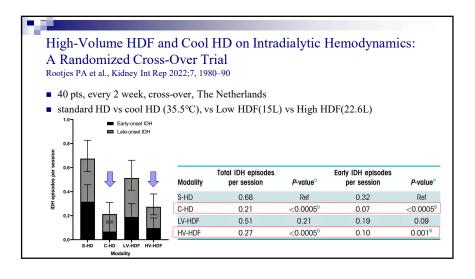


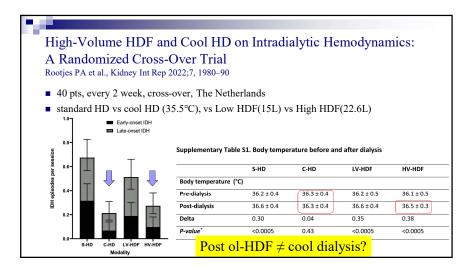


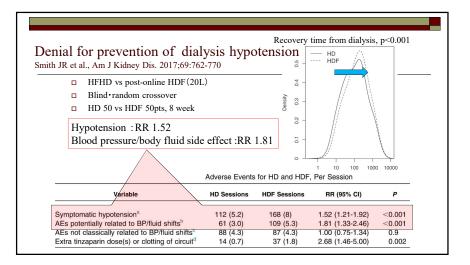


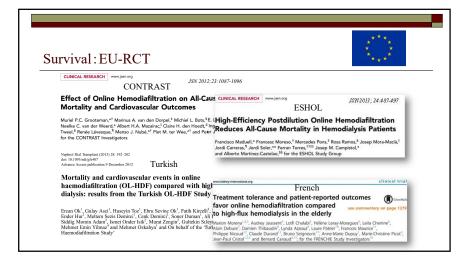

Prevention of dialysis hypotension Gibbs-Donnan effect

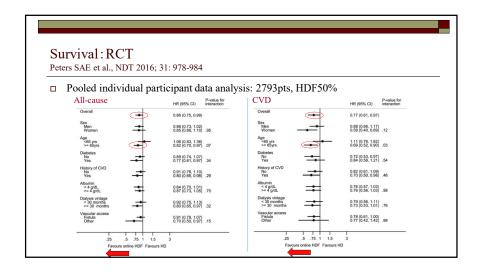

□ Gibbs-Donnan effect: The electrolyte reaches equilibrium by diffusion through the dialysis membrane; however with at non-diffusible anion (such as albumin), there are increases on the blood side of the membrane, the ion equilibrium collapses, and the diffusibility of Na+ as a cation decreases

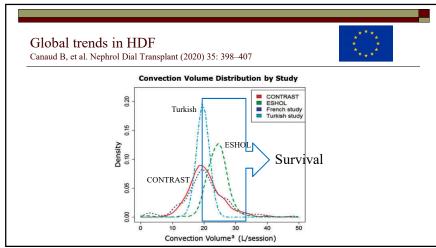


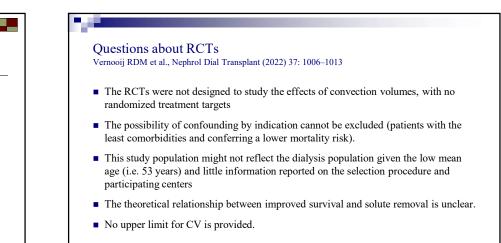

Gibbs-Donnan effect

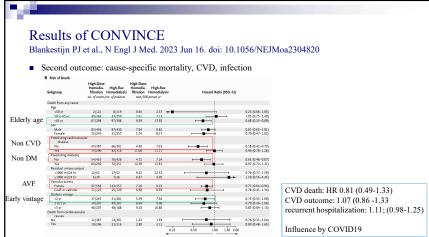

HD, Na+ is the same in the plasma and dialysate; the balance is -280 mM with 2 L of water removal. Post-HDF the albumin concentration on the blood side increases due to hemoconcentration. Na+ in the ultrafiltrate decreases to 135 mM due to the Gibbs-Donnan effect, and the Na+ equilibrium was -170 mM.

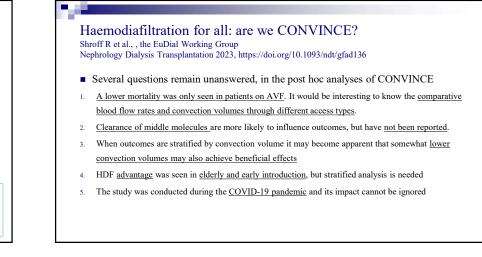


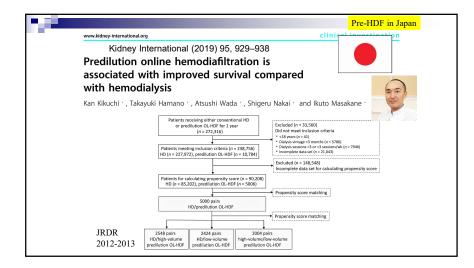


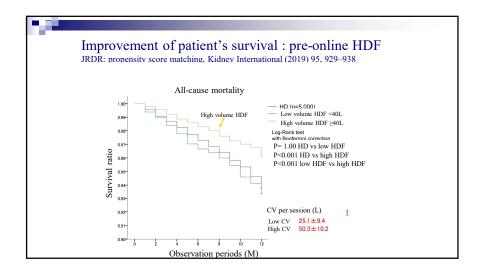


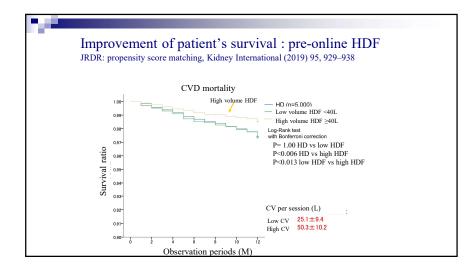


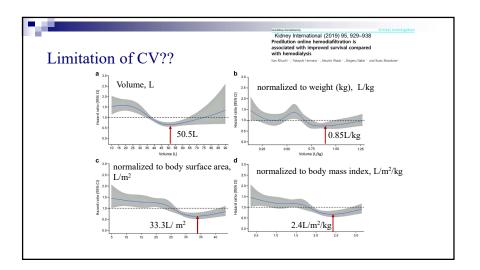


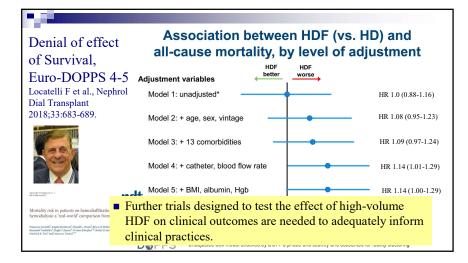


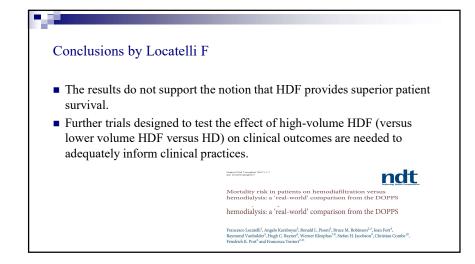


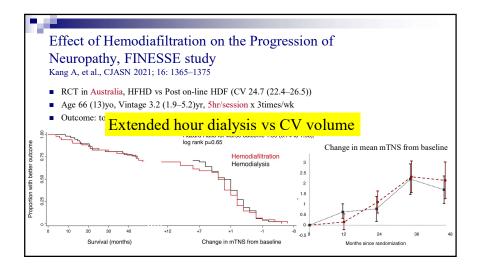


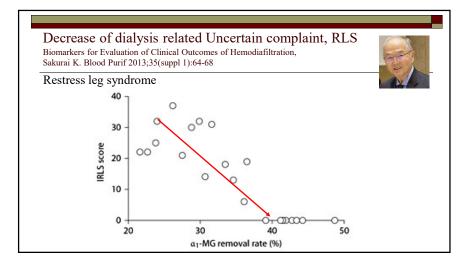

New HDF study, RCT **Results of CONVINCE** Vernooij RDM et al., Nephrol Dial Transplant (2022) 37: 1006-1013 Blankestijn PJ et al., N Engl J Med. 2023 Jun 16. doi: 10.1056/NEJMoa2304820 2018 to 2021, Total 1360, High-dose HDF (CV>23L) 683, High-flux HD 677, **CONVINCE (EU)** H4RT (UK) Medial follow up 30m, mean CV 25.3L • HDF(CV \ge 23L) vs HFHD ■ HDF(CV 21L) vs HFHD Primally outcome: all-cause mortality, Second outcome: cause-specific mortality, CVD, infection · Mortality or hospitalization with a • All-cause mortality CVD or infection · Cardiovascular events High-dose • All-cause mortality High-flux hemodialysis • Cause and infection-related All-cause mortality hospitalizations · Cardiovascular and infection related HDF 118 patients (17.3%) vs HD 148 (21.9%) morbidity and mortality · Patient-reported outcomes (hazard ratio, 0.77; 95% confidence interval, 0.65 to 0.93). • Health-related quality of life (HRQoL) Cost-effectiveness Cost-effectiveness Environmental impact Effect of Hemodiafiltration or Hemodialysis ➤ 3 years follow-up on Mortality in Kidney Failure 194 170 > 32 -50 months follow-up 110 140

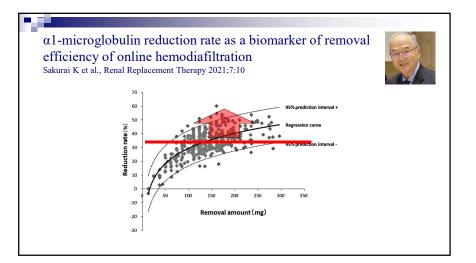


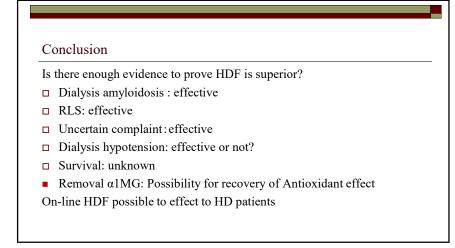












Thank you for your attention

If you have any questions, e-mail to **h-kawanishi@tsuchiya-hp.jp**