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CKOD: Incident general Medicare CKD patients, age 66 & older, 2001-2003 combined
ESKD: Incident ESKD patients, age 20 & older
Patients with CHF at baseline excluded. Probabilities unadjusted
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Abnormalities of Left Ventricle Precedes HF

» CRIC study of 417 participants

— Echocardiograms at Year 1 and at
dialysis start
« At an average of 2.9 years after
dialysis initiation, 4% worsening in
LVEF, P<0.001
« Every 1% decline in LVEF was
associated with a 3% greater risk of
mortality after ESRD

Variable Change from CKD to ESRD

Unadjusted Adjusted1
HR (95% CI) | HR (95% CI)

Ejection 1.04 (1.01, 1.03 (1.00,
fraction, per 1.05) 1.06)
1% decline

The model is adjusted for age, sex, race, dialysis
modality, cardiovascular disease, systolic blood

pressure, number of anti-hypertensive med classes,

diabetes, current smoker, and BMI

Bansai et al. AIKD Sep 2019

Current Diagnostic Paradigm

Clinical Presentation:
— Dyspnea

— Orthopnea

— Dependent edema
CXR:

— specific but only moderately sensitive in diagnosing HF
ECG:

— Rhythm disturbances

— Evidence of prior myocardial damage
Echocardiogram

— Gold standard to evaluate LV function

The ECG

 Surface level record of the electrical
activity of the myocardium

* Voltage and complex morphology
corresponds to the state of the
heart

* Some features invisible to naked
eye
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Vaid A et al. JACC: Cardiovascular Imaging (2021)

Machine learning

oiw
'.’.;".2‘}

TA MINING




11/29/2023

What is Machine Learning?
« Branch of artificial intelligence that enables a computer to learn from training data and improve over time with

little to no human input

Interpretation
Evaluation

Machine

Learning
Transformation
Pre-processing

A Patterns

Transformed
Pre-processed | prom 1

- Target data f data

g, gy ]

i

|

|

|
X

Types of Machine Learning
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Peng et al. Frontiers in Pharmacology Sept 2021

Machine Learning for All Stages of

Deep Learning

+ Subset of ML that is based on representation learning and artificial neural networks
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Risk Factors
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DL for LVEF from the ECG

+ Can quantify low LVEF (<40%)
with an Area Under Receiver
Operating Characteristic Curve
of 0.94

* Much faster and more
inexpensive than going for a
Transthoracic Echo

(Group Sratied Cros Vldation

Vaid A et al. JACC: Cardiovascular Imaging (2021)

Generic task

B patients with ESKD on HD Greperlo datoses Generic network

+ Hemodialysis positively Dy |:> A
associated with increased risk of

D) =

heart failure initially manifesting

as Left Ventricular Systolic Py
Dysfunction
« Can be screened using ECGs \1,

« Small patient population

Transfer Learning Dp @ A B

o)

« Utilize the expertise of a model
trained on one task for an
adjacent task

Specific dataset

Andrea Mari, Thomas R. Bromley, Josh Izaac, Maria St
Transfer learning in hybrid

Pre-trained Trainable

neural networks.

Specific task

« Training on 2" task: Fine-tuning
« Gets a better model — faster, and
with much less data

chuld, and Nathan Killoran.
(2019)

* ECGs paired to LVEF from Echo
(ECG: Echo pairs)

* HD patients: 2,168 | ECG: Echo
pairs: 18,626

* Non-HD patients: ~150,000 | ECG:
Echo pairs: ~700,000

I N G

Trained from scratch D patients -

Pretrained on 1.4M ImageNet HD patients
Imagenet Images

Large LVEF Non-HD patients -

Large LVEF Non-HD patients HD patients

Akhil

£CG: Echoy
(EcC: Edmpun .—\ Vaid

Vaid et al. CJASN July 2022

Improved Performance with Transfer

Learning
ROC: Value (95% Cl)

Training LVEF <40% LVEF 41- LVEF > 50%
method 50%
HD patients 074 055 071

(067-08)  (049-061)  (0.66-0.75) /
ImageNet — 071 055 0.69 4
Finetunedon  (0.65-0.77)  (0.49-06)  (0.62-0.77)
HD data
Non-HD patients ~ 0.80 0.51 077

(0.77-083)  (0.41-061)  (0.73-0.80)
Non-HD — 0386 0.68 083
Finetuned on  (0.83-0.88)  (0.63-0.73)  (0.80-0.85) :
HD data . -

Vaid et al. CJASN July 2022
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Mortality for Deep Learning Predicted LVEF
Summary 1
Death in LVEF <= 40%
Strata — True Positives — False Negatives - False Positives — True Negatives « Deep learning can determine LVEF accurately from EKGs in patients on maintenance dialysis
10~

* This prediction is more accurate if using pretrained models on non dialysis patients and then fine tuned for patients on
dialysis (transfer learning)

+ A DL determination of low LVEF is highly predictive of future mortality

Survival probability

07~

Time (Vears)

Adjusted for demographics, CAD and comorbidities

Vaid et al. CJASN July 2022

Pathogenesis of IDH
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Adbverse clinical outcomes of IDH
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Yildiz et al. Int Urol Nephrol Oct 2022

Can we use ECG to predict IDH risk?
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Methods

ECG waveform data from Mount Sinai Health Systems hospitals in New York City
Identified starting and ending times of inpatient HD procedures with flow sheets

— IDH defined as a SBP <90 mm Hg

Only ECGs within 48 hours of an HD procedure were included

Model structure was a 2-D CNN

— Densenet 201: pretrained on images from ImageNet

i

k channels channels

k channels channels

Patient characte

Characteristics Overall (ECGs=86,362) IDH (ECGs=12,437) No IDH (ECGs=73,925)
Age, mean (SD) 623 (14.12) 63.24 (13.45) 62.69 (14.09)
Male patients, % 60.9% 60.0% 60.9%
Racial groups: %
White 19.5% 226% 19.0%
Black 113% 11.6% 1.6%
Hispanic 5.3% 5.0% 53%
Asian 2.9% 22% 3.0%
Other/unknown 61.0% 58.6% 61.1%
SBP before starting HD 133 (28) 106 (21) 137 (26)
session, mean (SD)

Vaid et al. Kidney360 Sept 2023




Performance of our model
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ROC Curve Precision-Recall Curve
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Vaid et al. Kidney360 Sept 2023
Intersession Variability in K is High Higher Rates Mortality after Long Interdialytic Interval
« N=19 . « Higher all cause and cardiac mortality after the long

Patients randomized to 4 different dialysates

— K Max: Hypokalemia avoidance

— K Min: Hyperkalemia avoidance

— B Max: Acidosis avoidance

— Bmin: Alkalosis avoidance
Percentage of predialysis chemistry values
outside of listed range of the monthly

laboratory value within individual subjects
(95% confidence interval)

Intervention

Serum potassium

Values +0.5 mEq/ +1.0 mEq/
B Max 38% (29-46) 13% (8-20)
8 Min 44% (35-54) 12% (7-19)
K Max 35% (27-43) 1% (6-17)
K Min 34% (26-42) 7% (3-13)

Serum Potassium (mEq/L)

H 7 10 H B ; 10
ISTAT measurement since beginning of intervention

Pun etal. KI Reports Aug 2023

interdialytic interval in patients who are on thrice a
week dialysis

+ Hypothesized to be attributed to:
— Fluid overload
— Higher uremic toxins
— Rapid electrolyte (e.g. potassium) shifts

Patients treated with
same dialysate based off|
of monthly blood work

A Annualized Mortalty Rate

Allcauses

Cardiac causes

Rate per 100 Person-Yr.

Infectious causes Vascular causes

HD, HD1 HD, HD4l HD, HDsl  HDy2
Day of Week

Foley et al. NEJM Sept 2011
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Notable ECG Changes at Extreme Serum Potassium Levels Study Methods

ECG waveform data from Mount Sinai Health Systems hospitals in New York City

sasisaiiaaasiaiasass) « >600,000 patients with an ECG within 24 hours of a serum potassium level
wide, L:{"T”h“ | « The model architecture was a ConvNeXt Large, a purely convolutional neural network developed by Meta

Potassium fiat P

Increased K*
(hyperkalemia)

and pre-trained on ImageNet.

« The cohort was split 80:20 into training and test sets.

« Primary outcome was K>6 mEq/L within 24 hours of an ECG

Decreased K*
(hypokalemia)

HHHRETHE i
moderate extreme

Manual of Medicine

Performance of Model for Hyperkalemia Summary #2
+ 12087 (2%) of patients had a K>6 mEq/L + Deep learning can predict IDH using ECG in hospitalized patients on HD
+ The model achieved an AUROC of 0.88 and an AUPRC of 0.25 on internal testing, and an AUROC of 0.87 « Deep learning can be used to identify hyperkalemia (K>6 mEq/L) using ECG in hospitalized patients on HD

and AUPRC of 0.30 on external validation

Performance Curves: Hyperkalemia




What is next?

+ We are recruiting!
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ECG at study

atient recruitment enroliment
atNYU and MSHS and at 1 month

Continuous ECG
monitoring N=30

Model 1

1 DL model trained

and tested on ECG
‘waveform data from
patients

on HD

vs
Model 2
Traditional model with
ECG tabular data

vs
Model 3

NYU & MSHS =i

ECG databases|

4
DL model trained on

ECG waveform data
from non-HD patients.

4
Fine tuning of

model in HD patients

Prediction of:
Aim 1

IDH during HD

treatment

was obtained
& IDH prone

Validation at
Wake Forest Univ
=150

Sub-Study evaluating
feasibility of
continuous ECG

monitoring

Thank You/Any Questions?
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